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Abstract—Background: Code refactoring aims to improve code
structures via code transformations. A single transformation
rarely suffices to fully remove code smells that reveal poor
code structures. Most transformations are applied in batches,
i.e. sets of interrelated transformations, rather than in isolation.
Nevertheless, empirical knowledge on batch application, or batch
refactoring, is scarce. Such scarceness helps little to improve cur-
rent refactoring practices. Aims: We analyzed 57 open and closed
software projects. We aimed to understand batch application
from two perspectives: characteristics that typically constitute a
batch (e.g., the variety of transformation types employed), and
the batch effect on smells. Method: We analyzed 19 smell types
and 13 transformation types. We identified 4,607 batches, each
applied by the same developer on the same code element (method
or class); we expected to have batches whose transformations
are closely interrelated. We computed (1) the frequency in which
five batch characteristic manifest, (2) the probability of each
batch characteristics to remove smells, and (3) the frequency
in which batches introduce and remove smells. Results: Most
batches are quite simple: although most batches are applied on
more than one method (90%), they are usually composed of the
same transformation type (72%) and only two transformations
(57%). Batches applied on a single method are 2.6 times more
prone to fully remove smells than batches affecting more than
one method. Surprisingly, batches mostly ended up introducing
(51%) or not fully removing (38%) smells. Conclusions: The
batch simplicity suggests that developers have sub-explored the
combinations of transformations within a batch. We summarized
some batches that may fully remove smells, so that developers
can incorporate them into current refactoring practices.

Index Terms—code refactoring, code smell, quantitative study

I. INTRODUCTION

Code refactoring consists of applying transformations on
code structures aiming to improve them, thereby enhancing
the software maintainability [1]. Major companies adopt refac-
toring in practice [2] [3]. Along with refactoring, developers
apply one or more code transformations [4] [5]. An example
of a frequent transformation type is Extract Method [5] [6].
Extract Method consists of extracting specific code statements
from an existing method in order to create a new method [7].
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and 312149/2016-6), CAPES (175956), and FAPERJ (22520-7/2016).

Previous studies have largely investigated the refactoring effect
on software maintainability [3] [4] [5] [8]. These studies
often relied on characteristics that constitute each single code
transformation, such as the transformation type.

Code transformations are eventually applied for removing
poor code structures [3] [6] [9], which potentially harm the
software maintainability [10] [11] [12]. These structures may
be revealed by code smells [1] [13] [14]. A common smell
type is Feature Envy, i.e., a method that partially “envies”
the software features realized by another class rather than the
method’s host class [1] [15]. Hence, Feature Envy instances
reflect a poor feature encapsulation across classes and indicate
threats to maintainability [14]. It is advertised that refactoring
can help remove code smells. However, a single transformation
rarely suffices to fully remove a code smell [4] [16]. Each
isolated transformation tends to either introduce (33%) or do
not fully remove (57%) code smells [4]. Thus, improving
the current refactoring practices towards a more effective
removal of code smells requires understanding a wider and
more complex phenomenon called batch refactoring [17].

Batch refactoring means applying two or more interrelated
transformations in conjunction rather than a single transforma-
tion [18] [19] [20]. A set of interrelated code transformations
is called a batch [5]. Five batch characteristics and their typical
manifestations are discussed by past research: cardinality [18],
commit [21], scope [3], smelliness [17], and variety [5]. Each
characteristic can manifest in different ways in practice. Let
us take cardinality, i.e., the number of transformations within
a batch, as an example. It has two manifestations: 2 that repre-
sents the shortest set of interrelated transformations possible,
and ≥ 3 that encompasses a plenty of different numbers of
transformations. Batch characteristics and manifestations can
help reasoning about the batch application and drawing strate-
gies for successfully improving code structures. Indeed, fully
removing code smells typically requires combining various
transformations with different types [1] [4] [17].

Up to 60% of code transformations are applied in batches
rather than in isolation [5]. Nevertheless, current empirical
knowledge about batch refactoring is scarce. Previous stud-
ies (e.g., [3] [5] [19]) limit their discussions about batch
characteristics based on the authors’ assumptions without
any empirical validation. Thus, questions such as Which are978-1-5386-5541-2/18/$31.00 ©2019 IEEE



the most frequent manifestations of batch characteristics in
practice? were not yet addressed. Even worse, there is scarce
understanding of the batch effect on code smells in real
software projects. Thus, it remains hard to reason about
batches applied by developers in their daily work, but also
enhance current refactoring practices (e.g., [19] [22]). A recent
work [17] explored the overall effect of batches on code
smells. However, the relationship of such effect and the batch
characteristics remains unexplored.

In this paper, we present a large-scale quantitative study
with 57 open and closed software projects. Our major goal
was understanding the usual batch application from two per-
spectives: characteristics that typically constitute a batch, and
the batch effect on smells. We analyzed 19 smell types and
13 transformation types. We relied on a heuristic proposed by
a previous work [17] to identify 4,607 batches, each applied
by the same developer on the same code element (method
or class). The heuristic was carefully selected in order to
provide us with batches whose transformations are closely
interrelated. We computed (1) the frequency in which five
batch characteristic manifest, (2) the probability of each batch
characteristics to remove smells, and (3) the frequency in
which batches introduce and remove smells. Hereafter we
summarize our study findings:

• Most batches are quite simple: although most batches
are applied on more than one method (90%), they are
usually composed of the same transformation type (72%)
and only two transformations (57%). The batch simplicity
suggests that developers have sub-explored the combina-
tions of transformations within a batch.

• Batches applied on one method are 2.6 times more
prone to fully remove smells than batches affecting more
than one method. It suggests that major modifications
of code structures are more likely to harm the code
maintainability than minor modifications.

• Surprisingly, batches mostly ended up introducing (51%)
or not fully removing (38%) smells. Nevertheless, we
have characterized some particular cases in which batches
were able to at least partially improve code structures;
some of these batches were not documented by the
existing batch catalogs [1] [17].

II. BATCH REFACTORING AT A GLANCE

Section II-A overviews code refactoring. Section II-B in-
troduces batch refactoring. Section II-C discusses the possible
relationship between batch refactoring and code smells.

A. Code Refactoring and Transformation Types

Code refactoring means applying transformations on code
structures for enhancing software maintainability [3] [5]. A
plenty of transformation types can be employed by developers
along with refactoring [1]. Each transformation type defines
how developers should modify certain code elements, such
as methods and classes. Extract Method is an example of a
transformation type popularly adopted by developers [6] [7].
This transformation type consists of extracting particular code

statements of a method to create a new method. Extract
Method can be used to separate the software features across
methods of a software project [23]. Another example of a
transformation type is Move Method [24], which consists of
moving one method across classes. Move Method can be used
to better encapsulate software features across classes [1].

Table I lists the 13 transformation types assessed by our
work. The types include Extract Method, Move Method, and
Inline Method, which are frequent in practice [5] [6]. The
identification of code transformations in the 57 open and
closed software projects was supported by the Refactoring
Miner tool [6] [25]. The identified transformation types are
varied by level of code element affected: three types affect
locally an attribute (Lines 2 to 4); six types affect methods
(Lines 5 to 10); and four types have a broader effect and
modify a class or interface (Lines 11 to 14). In theory, these
transformation may help to remove code smells. For instance,
Extract Method may reduce too long methods [7], while Move
Method may remove Feature Envy [1].

TABLE I
TRANSFORMATION TYPES INVESTIGATED BY THIS WORK

Transformation Type Definition
Move Attribute Move an attribute across classes
Pull Up Attribute Move attribute from child to parent class
Push Down Attribute Move attribute from parent to child class
Extract Method Extract a new method from an existing one
Inline Method Move a method body to an existing method
Move Method Move a method across classes
Pull Up Method Move method from child to parent class
Push Down Method Move method from parent to child class
Rename Method Update name of an existing method
Extract Interface Extract an interface from an existing class
Extract Superclass Extract a superclass from an existing class
Move Class Move a class across packages
Rename Class Update name of an existing class

B. A Real Example of Batch Refactoring

Batch refactoring means applying two or more interrelated
code transformations [18] [19] [20]. Each set of interrelated
transformations composes a batch. We exemplify the batch
application as follows. Let us consider the SEach class of
the Elasticsearch open source software project. This class
has poor code structures that are hard to read and modify.
Along the commit history of SEach, the class became partic-
ularly complex for developers to comprehend because of two
problems. The major problem is that methods of this class
implement software features that are more concerned about
features provided by other classes, especially Variables
and MethodWriter, than SEach itself. This problem can
be revealed by the Feature Envy smell type [1]. In addition,
certain methods are too long and complex by themselves,
which can be revealed by the Long Method smell type [1].

Figure 1 illustrates a batch performed on the SEach class
along three consecutive commits (i, i+1, and i+2). In Commit
i, three smell instances affected the SEach methods1: while
a Long Method instance affects the analyze() method,

1https://github.com/elastic/elasticsearch/commit/8db9a971



Feature Envy instances affect both the analyze() and
write() methods. In Commit i + 1, because analyze()
is long and implements too many features2, the devel-
oper applied two Extract Method transformations (Extract
Method1 and Extract Method2), thereby creating the methods
analyzeArray() and analyzeIterable().

Fig. 1. Example of code transformations applied in a batch

Similarly, the developer applied two Extract Method
transformations (Extract Method3 and Extract Method4)
on write(), thereby creating the writeArray() and
writeIterable() methods. Consequently, in Commit i+
1, SEach obtained five new smells on extracting the methods:
four new Feature Envy instances have emerged, thereby prop-
agating the smelliness observed in Commit i, and one Long
Method instance was introduced in analyzeIterable().
The Long Method instance in analyze() was removed.

In Commit i+ 2, the developer applied an Inline Method3,
thereby rejoining the features implemented by analyze()
and analyzeIterable() in a single method. Differ-
ently from Extract Method, Inline Method removed a
Feature Envy instance while reintroduced Long Method.
Still regarding Commit i + 2, the developer removed the
analyzeIterable() method, thereby removing one Fea-
ture Envy instance and one Long Method instance. In sum-
mary, in order to improve code structures, the developer has
applied the batch b = {Extract Method1, Extract Method2,
Extract Method3, Extract Method4, Inline Method}. Indeed,
all transformations applied on Commits i + 1 and i + 2
seem to interrelate towards supporting a common developer
motivation: to properly distribute features across methods.

C. The Relationship of Code Smells and Batches

Code smells are typical symptoms of poor code structures
affecting a software project [1] [10]. Each single instance of
code smell may reveal, at least partially, potential harms to
the software maintainability [11] [12] [26]. Code smells vary
by the type of poor code structure revealed. An example of
common smell type in real projects is Long Method [1] [15].
This smell type is realized by too long and complex methods
that are typically hard to read and modify [13] [27]. Table II
summarizes the 19 smell types analyzed in this work, which

2https://github.com/elastic/elasticsearch/commit/6dace47
3https://github.com/elastic/elasticsearch/commit/b3804c4

affect a variety of code elements: nine types affect code
structures at the method level (Lines 2 to 10); and ten types
affect classes (Lines 11 to 20).

TABLE II
SMELL TYPES ANALYZED THROUGHOUT THIS WORK

Smell Type Definition
Brain Method Method overloaded with software features
Dispersed Coupling Method that calls too many methods
Divergent Change Method that changes often when others change
Feature Envy Method “envying” other classes’ features
Intensive Coupling Method that depends too much from a few others
Long Method Too long and complex method
Long Parameter List Too many parameters in a method
Message Chain Too long chain of method calls
Shotgun Surgery Method whose changes affect many methods
Brain Class Class overloaded with software features
Class Data should be Private Class that overexposes its attributes
Complex Class Too complex software features into a class
Data Class Only data management features into a class
God Class Too many software features into a class
Large Class Too large class
Lazy Class Too short and simple class
Refused Bequest Child class rarely uses parent class features
Spaghetti Code Too much code deviation and nesting
Speculative Generality Useless abstract class

The refactoring scenario of Figure 1 illustrates some insights
about how batches affect code smells. The code transfor-
mations applied by the developer on both analyze() and
write() methods suggest that the developer was clearly
concerned about improving the code structure. In fact, the
developer has tried to improve the structure of SEach in
Commits i+1 and i+2. In order to achieve a proper separation
of software features implemented by multiple methods of the
same class, the developer has applied five code transformations
in conjunction: four Extract Method instances and one Inline
Method, plus a method deletion. Unfortunately, in Commit
i + 2, SEach contains one Long Method and four Feature
Envy smell instances, which is two smell units higher than
the total before the batch application (Commit i).

In this work, we hypothesize that some batches are able
to partially improve a code structure. In the case of SEach,
the introduction of Feature Envy instances in Commit i + 1
was essential for better separating the software feature across
methods. However, fully removing Feature Envy would require
completing the batch with Move Method transformations
applied on the “envious” methods [1] [17]. Additionally, we
highlight that Long Method was reintroduced in analyze()
after successive transformations. This scenario reveals an
opportunity for guiding developers in applying batches.

III. EMPIRICAL METHODOLOGY

All study artifacts are available on our website:
https://anacarlagb.github.io/esem2019-batch-refactoring.

A. Goal and Research Questions

According to the Goal Question Metric (GQM) tem-
plate [28], our study goal is: analyze batch refactorings per-
formed by developers on their software projects; for the pur-
pose of understanding how batches have been applied and how
they affect code smells; with respect to batch characteristics



and the effect of batches on smell introduction and removal;
from the point of view of software engineering researchers; in
the context of 4,607 batch instances computed from 57 open or
closed software projects implemented in the Java programming
language. We designed two research questions.

RQ1: Which are the most frequent manifestations of batch
characteristics in real software projects? – The literature
(e.g., [3] [5] [21]) is quite fragmented with respect to the defi-
nition of characteristics that probably constitute a batch. Previ-
ous studies often mention five basic characteristics of batches:
cardinality [18], commit [21], scope [3], smelliness [17], and
variety [5]. Table III summarizes these characteristics with
their respective manifestations, as reported by previous studies.
For instance, variety has two typical manifestations: one type
of code transformation for the entire batch, and many types
that vary by code transformation within a batch.

TABLE III
TYPICAL MANIFESTATIONS BY BATCH CHARACTERISTIC

Charact. Manifestation Description
Cardinality 2 Batch has two transformations

≥ 3 Batch has three or more transformations
Commit One commit Batch completed in only one commit

Many commits Batch completed in two or more commits
Scope Method Batch transformed only one method

Class Batch transformed multiple methods or class
Smelliness Smelly Batch affected smelly code element

Not smelly Batch did not affect smell code element
Variety One type Batch has only one transformation type

Many types Batch has two or more transformation types

There is still no consensus about which characteristics are
relevant to understand the batch effect on code smells. This
is because most of the previous studies did not empirically
investigate the batch characteristics and their manifestations
in real projects. Conversely, these studies mostly provide hints
of batch characteristics based on the authors’ assumptions and
for convenience, e.g., to support a certain data analysis – as
in the case of [3] and [5]. How many code transformations
usually constitute batches? and How many commits are often
required to complete the batch application? are examples
of questions that were poorly addressed by previous studies.
Thus, it remains hard to reason about applied batches.

A recent study [17] presented the first study aimed to
investigate how batch characteristics manifest in real projects.
The authors have investigated four out of the five charac-
teristics selected for analysis in our study (Table III). The
characteristics are cardinality, commit, smelliness, and variety.
We have found the following opportunities to improve the
previous investigation. Regarding smelliness, the past study
assessed only if neutral batches affect the code smell types
affecting the modified code structures. Differently, RQ1 as-
sesses how many batches occur in smelly code elements –
i.e., code elements affected by smells either before or after the
batch application. Additionally, RQ1 assesses one additional
characteristic (scope). Finally, we analyzed the frequency of
manifestations by batch characteristics in two ways: each
manifestation in isolation (similarly to the previous work [17])
and combined (details in Section V).

RQ2: How do batches affect code smells in real software
projects? – Code refactoring is usually associated with en-
hancements for software maintenance [4] [8] [29], and so
is batch refactoring [17] [19] [20] [22]. Fowler’s refactoring
book [1] recommends some batches that may succeed in
fully removing code smells. For instance, it is discussed that
combining Extract Method with Move Method transformations
can fully remove Feature Envy instances [1] [4]. Nevertheless,
little empirical knowledge was acquired so far about the
effectiveness of batches in fully removing code smells. As
a consequence, it remains hard for researchers to recommend
batches that can actually remove code smells without major
side-effects on the code structure of a software project (e.g.,
the introduction of other code smell instances).

Previously [17], the batch effect was computed by the
number of code smell instances the code elements had before
and after the batch application. For instances, if a batch applied
to a class C has decreased the number of code smells affecting
C, the batch effect was positive; if the batch increased the
number of code smells, the effect was negative; if the number
of code smells did not change, the effect was neutral. However,
there was a major limitation that should be addressed: the
batch effect on code smells was not assessed in terms of the
batch characteristics. Thus, some key questions remain without
being addressed, such as Which batch characteristics are more
likely to be associated with the code smell removal?

Through RQ1, we explore a key batch characteristic called
variety, which regards the variety of transformation types that
constitute a batch. Analyzing the most frequent manifestations
of variety in practice is a good starting point to understand
the batch application. However, such analysis helps little to
understand the actual contribution of the various existing
transformation types (e.g., Extract Method and Move Method)
on the code smell introduction and removal. Aiming at per-
forming a more detailed analysis, we have designed RQ2 to
explore the batch effect on code smells based on the nature
of code transformations that constitute a batch. Table IV lists
the nature of all 13 transformation types of Table I. The first
column defines each of the six natures; the second column
lists the transformation types that correspond to each nature.

TABLE IV
NATURE OF TRANSFORMATION TYPES

Nature Definition Transformation Types

Extraction Extracting (parts of) an existing code
element aimed to create a new element

Extract Interface
Extract Method
Extract Superclass

Inline Copying a code element’s body for
pasting into an existing element Inline Method

Motion Moving a code element within
the software project

Move Attribute
Move Class
Move Method

Pull Up Moving a code element from
subclass to superclass

Pull Up Attribute
Pull Up Method

Push Down Moving a code element from
superclass to subclass

Push Down Attribute
Push Down Method

Rename Renaming a code element Rename Class
Rename Method



B. Study Steps

Step 1: Study Preparation. This step consisted of selecting
software projects for analysis. We searched for open source
software projects available online at GitHub, preferably devel-
oped in Java due to the wide popularity of this programming
language4 and ease of study replication. We sorted all software
projects by stars count, which has been useful for filtering
active and popular projects [30]; we selected the top-100
projects. Thereafter, we filtered the software projects in order
to keep those with at least 90% of source code written in
Java. The resulting set of 54 open source projects sums up
13,400,686 Lines of Code (LOC) and 151,391 commits. Code
refactoring is often studied in these projects [4] [8] [13] [29],
e.g., Ant, ArgoUML, Elasticsearch, JUnit, and Spring Frame-
work. Three anonymous companies provided us with one
closed project each for analysis. These companies expected to
contribute and improve their practices based on our findings.

Step 2: Transformation Detection. This step consisted
of detecting all code transformation instances applied by
developers in each of the 57 analyzed projects. Aimed to
support the transformation detection, we have employed a tool
called Refactoring Miner [6] [25]. This tool was designed to
detect 13 transformation types (which are listed in Table I).
The tool’s accuracy is satisfactory: 93% of recall and 98% of
precision [6] [25]. We collected a total of 24,893 transforma-
tions whose distribution by type is: mean = 1,560; minimum
= 13; median = 838; and maximum = 6,992.

Step 3: Batch Computation. A recent study [17] in-
troduced batch computation heuristics. Among the proposed
heuristics, one of them stood out for its ability to capture fine-
grained batches whose code transformations are closely inter-
related: the element-based heuristic. For each code element,
this heuristic analyzes the whole commit history of a software
project. Based on the commit history of the code element,
the heuristic involves computing all sets of two or more code
transformations that satisfy two mandatory conditions: (1) all
code transformations within the set were applied on exactly
one code element – the element can be either a method
or a class; and (2) all code transformations within the set
were applied by exactly one software developer. From the 57
projects analysis, we collected 4,607 batches in total.

The chosen heuristic is quite restrictive with respect to
the developer responsible for the batch application and the
modified code element. One could argue that, in certain
circumstances, the computed batches may be unrealistic once
they are constituted of too many code transformations. Having
this in mind, we also computed the distribution of number
of transformations that constitute the batches and our results
were encouraging: most batches (96%) are constituted by
ten transformations at most; thus, only a few batches (4%)
are likely to have unrealistic numbers of transformations.
Additionally, the chosen heuristic does not capture batches
that modify more than one class or a whole package. In this
case, it is worth mentioning that we are concerned about

4https://www.tiobe.com/tiobe-index/

transformation and smell types that affect either an attribute,
a method, or a class (cf. Tables I and II).

Step 4: Smell Detection. This step consisted of computing
code smell instances by software projects. We relied on
the 19 smell types listed in Table II. For this purpose, we
first computed static code metrics, such as Lines of Code
(LOC) and Cyclomatic Complexity (CC) [31], supported by
the Understand tool5. After that, we combined metrics in
detection strategies [32] by smell type aimed to detect all
code smells affecting each software project. The employed
detection strategies of code smells were selected from previous
studies [10] [15] [29]. These strategies were validated by
previous work [29] with a resulting precision and recall [33]
of 72% and 81%, respectively. We collected 41,398 code smell
instances whose average number by smell type equals 2,435.

Step 5: Batch Effect Computation. We computed three
types of batch effects on code smells. The positive effect
means that the total number of code smell instances in the
code elements affected by the batch has reduced after the batch
application. Conversely, the negative effect the total number of
code smell instances in the code elements affected by the batch
has increased after the batch application. In the borderline, the
neutral effect means that even if the code smell types affecting
the refactored code has changed, the total number of code
smell instances remained unaffected. We opted for an analysis
of the code smell introduction and removal because, by defini-
tion, code transformations are designed for (at least partially)
improving the code structure, thereby potential contributing
to remove code smells. However, as typically happens with
single transformations applied in isolation, batches could also
tend to not remove code smell instances.

Step 6: Data Analysis. This step consisted of analyzing
the collected data in order to address our RQs. Aimed to
answer RQ1, we have computed the frequency in which the
five batch characteristics summarized in Table III manifest in
practice. In order to answer RQ2, we performed two analyses:
we computed the probability of each batch characteristic to
remove smells; we also computed the the frequency in which
batches introduce and remove code smells.

We computed the data distribution for the 57 projects
analyzed with respect to four metrics. About the number of
code transformations: one quarter of the projects have at least
376 transformations detected, which suggests a considerable
refactoring activity across projects. About the number of
batches: only a few batches were found in half of the projects
(median = 15), but 25% of projects had at least 71 batches;
we found this result reasonable given the restrictiveness of
our heuristic (see Step 3). About the ratio of batches by code
transformations for each project: there seems to be a balance
between the number of projects with high ratio and low ratio
(minimum = 4, median = 24, and maximum = 33). About the
number of commits performed during the life cycle of each
project: although values tend to be low (median = 144), 25%
of the projects have at least 790 commits.

5https://scitools.com/features/



IV. MANIFESTATION OF BATCH CHARACTERISTICS (RQ1)

We investigate RQ1 by classifying all 4,607 computed
batches according to the possible manifestations by batch
characteristic (Table III). Table V summarizes the frequency
of each manifestation by batch characteristic.

TABLE V
FREQUENCY OF MANIFESTATIONS BY BATCH CHARACTERISTIC

Characteristic Manifestation # Batches Frequency
Cardinality 2 2,605 57%

≥3 2,002 43%
Commit One commit 4,265 93%

Many commits 342 7%
Scope Method 428 9%

Class 4,179 91%
Smelliness Smelly 2,911 63%

Not smelly 1,696 37%
Variety One type 3,330 72%

Many types 1,277 28%

Characteristic 1: Cardinality. We have found that more
than half of batches (57%) are constituted of exactly two
code transformations. This result shows that most of the
batches are not complex. While such simpler batches may
eventually suffice to remove simpler smelly structures, they
may not suffice to remove most of the smell types considered
in our study. For instance, in order to fully remove a Large
Class instance, developers may have to apply various Extract
Class, Move Method, and Extract Interface transformations in
conjunction [1]. With such simpler batches, developers may be
sub-using the possible combinations of code transformations
for removing certain code smells.

However, we also found that a considerable amount of
batches (43%) are constituted of three or more code trans-
formations. We further analyzed these batches by computing
the numerical distribution of their cardinality. The goal was
to find frequent ranges of batches’ cardinality. We have found
that: 768 batches (17%) have cardinality = 3; 411 batches (9%)
have cardinality = 4; 600 batches (13%) have cardinality from
5 to 10. In total, 1,779 out of the 4,607 batches (39%) range
from three to ten code transformations. The remaining 4%
represents batches with 10 or more transformations. On one
hand, batches with more than two transformations are more
likely to remove at a least a code smell. On the other hand,
they may be affecting very complex smelly structures and,
therefore, may not succeed in fully removing the smell.

Characteristic 2: Commit. Most batches (93%) required
only one commit to be completed by the developer. Let us
remind that our batch computation heuristic considers all trans-
formations applied on a single code element as part of a batch.
By combining this information with the high rates of batches
completed in one commit, one could assume that commits
often mark a change in the developers’ motivation for code
refactoring. In other words, it is very likely the transformations
of each detected batch were cohesively related. It is also
interesting to observe that, even in a single commit, there

was a considerable proportion of batches with three or more
transformations, as discussed above. As far as the time spent
to complete batches is concerned: 32% of batches took just
one day to be completed, which matches the fact that most
batches are applied in one commit; 46% took more than one
day and less than 30 days (one month); and only 23% took
more than one month to be completed. Fortunately, only 5%
of batches took more than 365 days (one year), which is low
enough and suggest a certain soundness of our heuristic.

It may be the case that multiple developers work together to
form a batch across commits or within the same commit – as
in the case of batches composed along with code reviews [20].
This particular scenario is not captured by our heuristic, once
all transformations have to be applied by the same developer.
Anyway, the role of commit in marking a change in the
developers’ refactoring motivations should be further validated
by interviewing actual developers in future studies.

Characteristics 3 and 4: Scope and Variety. Our study re-
sults suggest that most batches (91%) affect multiple methods
into a class and/or the class itself. Only 9% of batches affect a
single method. This result is somehow expected because many
code smell types affect multiple methods of a class together.
Thus, it is reasonable that batches are mostly constituted
of transformations affecting various methods (or the entire
class) together. As for the variety of transformation types, we
observed that most batches (72%) consist of transformations
with one type; still, 28% are batches consisting of many types.
This result was unexpected because many batch recommenda-
tions [1] [4] [17] [22] depend on the combination of different
transformation types for fully removing poor code structures,
especially code smell instances.

Characteristic 5: Smelliness. Table V shows that the
majority of the batches (63%) indeed affect smelly elements.
In the next section, we will discuss whether these batches
tend to remove or not those smells. Our results also show
that 37% of batches occur in code elements not affected by
code smells neither before nor after the batch application. This
result can be explained by the fact that refactoring can be
applied for other reasons such as enabling the addition of
software features [34] and supporting bug fixes [16]. However,
additional studies are necessary in order to confirm this
observation, similarly to what has been done in the context
of each single code transformation (e.g., [6] and [25]).

Finding 1: Quite simple batches have been applied
so far: 72% are composed of the same transformation
type, and 57% have only two transformations. Developers
are possibly sub-exploring the batch application to fully
remove smells. On the other hand, 43% batches are
composed of three or more transformations. Section V
assesses whether such simple or more complex batches
are removing smells.



TABLE VI
BATCH EFFECT ON CODE SMELLS (PLUS FISHER’S TEST) BY BATCH CHARACTERISTIC

Characteristic Manifestation Positive Negative Neutral Odds Ratio (OR) p-valueAbsolute % Absolute % Absolute %

Cardinality 2 189 6% 847 29% 570 20% 0.90 > 0.05≥ 3 160 5% 647 22% 498 18%

Commit One commit 328 11% 1,414 49% 994 34% 0.92 > 0.05Many commits 21 1% 80 3% 74 4%

Scope Method 30 1% 52 2% 17 0% 2.60 < 0.05Class 319 11% 1,442 50% 1051 38%

Variety One type 240 8% 1,051 36% 749 26% 0.92 > 0.05Many types 109 4% 443 15% 319 12%

V. BATCH EFFECT ON CODE SMELLS (RQ2)

Scope is strongly related with code smell introduction.
We computed the relationship of batch characteristics and
batch effect on code smells via Fisher’s exact test [35] with
confidence interval equals 95% (p-value < 0.05). Fisher’s test
computes the probability of a property (e.g., the manifestations
of a batch characteristic) to co-occur with another property
(e.g., the code smell introduction or removal). Table VI
presents the test results by characteristic except smelliness.
All table data regard the 2,911 batches categorized as smelly
(Table V); thus, it does not make sense to assess the effect
of not smelly batches (Table III). For each characteristic, we
created a contingency table in which: the lines correspond
to the possible manifestations (e.g., Lines 2 and 3); and the
columns have the absolute numbers of positive and negative
effect of batches on code smells (e.g., Columns 3 and 5).
We then computed Fisher’s test with each table as an input;
two outputs are given: Odds Ratio (OR) [36] and p-value.
Odds Ratio is the probability of a manifestation (e.g., one
commit in Line 2) to remove code smells (Positive Absolute
in Column 3) when compared to the same probability for the
opposite manifestation (many commits in Line 3). Achieving
a statistically significant OR requires a p-value < 0.05.

For the sake of illustration, let us consider the characteristic
of commit. Batches applied in one commit are 92% more likely
to have a positive effect on code smells than batches applied in
many commits. In this case, the table indicates that statistical
significance was not achieved by the commit characteristic. In
fact, as the only batch characteristics whose OR is statistically
significant is scope. In this particular case, we have found
that batches applied on a single method are 260% more likely
to have a positive effect on code smells when compared to
batches applied at the class scope.

Finding 2: Batches at the method scope are 2.6 times
more prone to fully remove smells than others. One could
say that a greater number of code elements modified by
a batch implies more complex smells to remove; thus,
batches at class will probably introduce or not remove
smells. However, many batches recommended to remove
smells [1] are at class scope; it suggests that developers
are either sub-using or misusing these recommendations.

Batches usually introduce rather than remove code
smells. A previous work [17] has found that most code
transformations, when analyzed in isolation, tend to either
introduce (33%) or not fully remove (57%) code smells from
software projects. However, analyzing the effect of each single
transformation on code smells may not suffice for under-
standing the whole effect of code refactoring on the program
comprehension. In the particular case of batch refactoring, we
have observed a similar scenario. Our results indicate code
smells were introduced by 1,494 (51%) out of the 2,911 smelly
batches. Additionally, we have found that 1,068 (38%) of the
smelly batches were not able to fully remove code smells.

We complemented our previous analysis by combining
different manifestations to further investigate the batch effect
on code smells. We categorized according to all possible com-
binations of manifestations for the four batch characteristics
analyzed in Table VI. A combination follows this order of
batch characteristics: cardinality, commit, scope, and variety.
We aimed to identify combinations that are more prone to
introduce or remove code smells. Table VII lists the top-
five most frequent combinations based on the 2,911 batches
categorized as smelly (Table V). We focused on the top-five
combinations because, surprisingly, they sum up 2,701 out
of the 2,911 batches (93%) categorized as smelly. The first
column lists the combinations. The following columns present
the absolute (Abs.) and relative (%) frequency of batches
whose effect is negative, neutral, and positive.

TABLE VII
FIVE MOST FREQUENT COMBINATIONS OF MANIFESTATIONS

Combination Negative Neutral Positive
Abs. % Abs. % Abs. %

2, One commit, Class, One type 611 21 418 14 123 4
≥3, One commit, Class, One type 366 13 280 10 84 3
≥3, One commit, Class, Many types 230 8 176 6 59 2
2, One commit, Class, Many types 156 5 110 4 35 1
2, One commit, Method, One type 28 1 4 0 21 1
Total 1,391 48 988 34 322 11

We have found that 2,347 out of 2,911 batches (81%) have
either a negative or neutral effect on code smells. Curiously,
58% of these batches are composed by exactly one transfor-
mation type, while only 23% contain many transformation
types. Additionally, batches that took only one commit to
be completed, which are usually applied at the class scope,
tend to introduce or not fully remove code smells. Even non-



trivial batches, i.e., composed by more than one transformation
type are more likely to introduce rather than fully remove
code smells. This finding confirms our previous observation
(Section IV) that developers may have poorly explored the
combination of transformation types to remove code smells.
Nevertheless, further investigation is required to understand
which types of transformations have been usually employed in
these ineffective batches. We address this gap in the following
by investigating the nature of code transformations that con-
stitute these batches. Table IV in Section III-A described the
meaning of each nature considered in our study.

Finding 3: Batches tend to either introduce (51%) or not
fully remove (38%) code smells. A previous study has
shown that single transformations tend to introduce smells
in 33% of the cases [4]. This result suggests that batch
application often does not accomplish code structure
improvements. This result also reinforces the need for
guiding developers along with the batch application.

On the batch effect by nature of code transformations.
Finally, we analyzed the batch effect based on the nature of
code transformations that constitute a batch. We followed a
three-step analysis procedure. Step 1: we grouped all 4,607
batches by nature of code transformations (Table IV). It is
worth mentioning that a batch may be composed of one or
more natures; cases of multiple natures occurring together in a
single batch were grouped in isolation from the “pure” groups
(with only one nature). Step 2: we computed how many code
smells were either introduced or removed by group of batches.
Step 3: we computed the rate of code smells introduced by
group according to the formula I(g) = i(g)

i(g)+r(g) , where: i(g)
is the number of smell instances introduced by a group g, and
r(g) is the number of smell instances removed by g.

Table VIII summarizes the batch effect on code smells
according to the nature of transformations. The table data
consider all 4,607 batches regardless the manifestations of
batch characteristics. In the second and third columns, no
batch was counted for more than one category. The remaining
columns present the I(g) values by code smell type analyzed
in this work. We marked with “*” all I(g) values for which
i(g) + r(g) < 5; we aimed to warn about I(g) values
computed on only a few smell instances (which may not be as
relevant as values computed on many instances). Red-colored
cells indicate I(g) > 50, i.e., groups of batches that tend
to introduce rather than remove code smells. Green-colored
cells indicate I(g) < 50, i.e., groups that tend to remove
rather than introduce smells. White-colored cells indicate
either I(g) = 50%, i.e., groups of batches that introduce and
remove smells in an equivalent rate, or values marked with “*”
and, therefore, considered of little practical relevance. Due to
space constraints in the paper, we display the results for ten
out of the 19 code smell types under analysis (Table II). This
decision was taken because the occurrence of many smell types
is very rare, which made it unfeasible to compute I(g) values.

Batches were more likely to remove code smells for two smell
types only: Feature Envy and Message Chain.

Regarding Feature Envy, batches of three natures (Pull
Up, Inline, and Inline/Motion) removed rather than intro-
duced smells. Pull Up batches (all with at least one Pull Up
Method) removed 12 Feature Envy instances; the “envious”
methods were possibly moved to the superclass so that the
smell affecting the subclass vanished. Inline batches with
only Inline Method transformations removed 39 Feature Envy
instances. Our results are quite surprising because previous
catalogs [1] [17] recommend Extraction/Motion batches to
fully remove Feature Envy. An example is combining Extract
Method and Move Method [1], which introduced 26 Feature
Envy instances (contrary to expectations). Curiously, Extrac-
tion/Motion batches had I(g) = 98.1; thus, they rarely remove
Feature Envy, at least as they have been applied so far. Two
scenarios may justify this observation: (1) developers correctly
applied Extract Method on the “envious” code, but they did not
apply Move Method precisely on the extracted (and ”envious”)
methods; (2) many “envious” methods were created via Extract
Method but not all of them were moved. Note that batches with
only Extract Method introduced 841 Feature Envy instances;
it reinforces how important is to combine Extract Method with
other transformation type to fully remove smells.

Regarding Message Chain, batches of four natures (Motion,
Pull Up, Extraction/Motion, and Motion/Rename) removed
rather than introduced smells. Our results are quite reveal-
ing, once Fowler’s recommendation to fully remove Message
Chain instances is limited to Extract/Method batches [1]. In the
case reported by Fowler, the recommended batch can reduce
a too long chain of method calls by moving methods that
are closely related to the same class. As expected, batches
of this nature were successful in fully removing Message
Chain instances (I(g) = 37.5). As a complement, our results
indicate alternative batches, such as those of Motion/Renaming
nature. In this particular case, batches were able to remove 36
Message Chain instances; it is possible that methods within
a chain of method calls was moved across classes, thereby
reducing the chain size. Similar reasoning applies to Pull
Up batches, which removed 5 Message Chain instances. This
particular case is tricky: moving a method from subclass to
superclass may have removed the smell instance from the
subclass but introduced a smell instance in the superclass.

The success of some Fowler-recommended batches in
removing smells. Besides the aforementioned batches recom-
mended by Fowler’s catalog [1] to fully remove Feature Envy
and Message Chain instances, there are some other recommen-
dations proposed in the same catalog. These recommendations
target two code smell types: Data Class and Long Method.
There are two batches recommended to remove Data Class:
one of the Motion nature and other of the Extraction/Motion
nature. Four out of the eight Data Class instances (50%)
were removed through Motion batches, while one out of the
eight instances (12%) was removed via a Extraction/Motion
batch. However, it is worth mentioning that Data Class was
too rare in the 57 analyzed projects for us to generalize



TABLE VIII
BATCH EFFECT ON CODE SMELLS ACCORDING TO THE NATURE OF CODE TRANSFORMATIONS
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Extraction 1,449 31 100 78.7 92.3 87.1 83.2 100 83.8 61.4 95.1 82.2
Motion 1,142 25 98.5 85.5 89.3 *100 88.5 86.8 82.4 *100 *100 41.7
Rename 580 13 100 100 91.7 100 80 100 98.7 94.1 100 97.8
Pull Up 352 8 87.5 88.9 77.8 *100 57.1 95 47.8 *100 *33.3 28.6
Extraction/Inline 233 5 100 87.5 92.3 87.5 81 *100 84.8 88.2 81.3 80
Inline 221 5 100 73.9 *66.6 88.9 75.0 *100 45.1 60 72.2 76.5
Extraction/Motion 153 3 100 78.4 88.9 *100 94.4 *100 98.1 73.7 100 37.5
Extraction/Rename 105 2 100 92.6 100 *100 100 *100 87.5 87.5 100 100
Motion/Pull Up 84 2 *50 85.7 *50 *0 *50 100 *0 *0 *0 *0
Motion/Rename 59 1 100 100 *100 *50 *50 *0 77.3 *66.6 *0 37.2
Push Down 58 1 *100 75.0 *0 *0 *0 100 *0 *0 *0 *0
Inline/Motion 52 1 *100 75.0 *50 *100 *33.3 *0 35 66.7 40 *50
Extraction/Inline/Motion/Rename 28 1 100 100 *100 *100 *100 *0 100 100 *100 *100
Inline/Rename 25 1 *100 100 100 *100 *100 *100 *100 *100 *100 *0
Extraction/Pull Up 18 0 *0 *0 *100 *0 *0 *0 50.0 *0 *100 *0
Extraction/Push Down 11 0 *100 *66.6 *0 *0 *100 *100 80 *0 *0 *100
Extraction/Inline/Motion/Pull Up/Push Down/Rename 11 0 *0 *0 *0 *0 *0 *66.6 *66.6 *0 *100 *0
Inline/Pull Up 8 0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
Pull Up/Rename 7 0 *0 *100 *0 *0 *0 *0 *0 *0 *0 *0
Pull Up/Push Down 6 0 *100 *0 *0 *0 *0 *100 *100 *0 *0 *0
Inline/Push Down 3 0 *0 *0 *0 *0 *0 *0 *20 *0 *0 *100
Push Down/Rename 2 0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
All 4,607 100 98.3 84.2 89.4 88.6 83.0 94.4 81.9 69.9 91.9 74.6

the positive effect of both recommended batches on code
smells. Extraction batches were recommended to remove Long
Method. These batches were able to remove 95 out of the 124
Long Method instances (77%). Nevertheless, as pointed out
by Table VIII, the majority of Extraction batches introduce
rather than remove Long Method instances. This result may
have been found because some Long Method instances are too
long to fully remove via a few code transformations – note that
most batches range from 2 to 10 transformations (Table V).

Finding 4: A half of batches are constituted of code trans-
formations of either Extraction (31%) or Motion (25%)
natures. Only 16% of batches combine transformations of
different natures. We have found that batches of certain
natures (such as Pull Up) usually remove two code smells:
Feature Envy and Message Chain. These batches were not
previously reported by catalogs such as Fowler’s book [1].
Nevertheless, batches often end up introducing rather than
removing smells, regardless the combination of natures.

VI. THREATS TO VALIDITY

Construct Validity. We carefully designed the study ar-
tifacts required to perform our quantitative data analysis
(Sections IV and V). We collected five batch character-
istics and manifestations often discussed by various stud-
ies [3] [5] [17] [18] [21]. Thus, we expected to understand
how batches have been applied in practice from a considerable
number of (eventually complementary) perspectives. We fol-
lowed strict guidelines for collecting and filtering our 57 soft-
ware projects before extracting data from them (Section III-B).
Inspired by previous work [4] [6] [8] [30], we selected highly

popular projects whose refactoring and maintenance activities
are expected to reflect the current software industry.

We detected code transformation instances via the Refac-
toring Miner tool whose accuracy is high [6] [25]. Thus, we
mitigated possible errors derived from a manual detection.
The tool enabled us to detect 13 types that affect code
structure at different levels (Table I). We computed software
metrics from the Understand tool, which has been largely
employed for research purposes [4] [8] [37]. The metrics were
combined to detect code smells based on strategies proposed
by the literature [10] [15] [29]; these strategies showed a
high accuracy [29]. Thus, we expected to avoid the incorrect
detection of code smell instances. The strategies enabled us to
detect 19 different code smell types (Table II).

The accuracy of our batch computation heuristic (Sec-
tion III-B) can be contested due to the lack of developer
validation. Unfortunately, it is hard to capture developers’
motivations behind each transformation and draw interrelations
that form valid batches, specially in retrospective studies as
ours. We overcame this difficulty by interrelating transforma-
tions applied by the same developer on the same code element.
Our heuristic favors cases when each developer maintains a
particular code part [38] [39]. Thus, the heuristic may suffice
to capture batches at method and class scope but overlook
two cases in special: when developers collaborate to compose
a batch [20], and coarse-grained batches designed at the
architecture level [22] [34]. Nevertheless, our heuristic sounds
reasonable especially to understand the batch effect on code
smells whose definitions target one method or class (Table II).
We wrote Python scripts to automate the batch computation
based on a heuristic cherry-picked from a previous work [17].
These scripts were validated by two of the paper authors.



Internal Validity. We payed special attention while col-
lecting data based on the artifacts and instruments mentioned
above. Two paper authors carefully read the full text of
five studies [3] [5] [17] [18] [21] in order to extract the
batch characteristics and manifestations. We discussed any
divergences in a pair aimed to reach a consensus about which
characteristics and manifestations were feasible to compute
and analyze. The data of code transformations, batches, and
code smells by software project were collected through a
task force that counted on more than four paper authors. The
batch instances were tabulated and doubled-validated by two
paper authors. Thus, we aimed at mitigating threats regarding
missing, invalid, and duplicated data; our procedures were
essential to discard duplicates, for instance.

Conclusion Validity. We carefully performed our quanti-
tative data analysis in two fronts: descriptive and statistical
analysis. Regarding the descriptive analysis, two paper authors
contributed to the frequency computation of batch character-
istics by manifestations (Section IV describes our results).
We then tabulated and plotted all data based on descriptive
analysis guidelines for Software Engineering [40] [41]. Thus,
we expected to apply the most appropriate techniques for
aggregating and visually representing our data. For the sta-
tistical analysis, we relied on Fisher’s test [35] plus an Odd
Ration interpretation guideline from the literature [36]. All
analysis results were double-checked by two paper authors
aimed to mitigate biases and the misapplication of analysis
procedures. We analyzed the batch effect on code smells by
computing the number of smells before and after the batch
application, similarly to a previous work [17]. This approach
is limited because it overlooks eventual changes of code smell
types caused by the application of neutral batches (Step 5
of Section III-B). However, it was discussed that only a few
neutral batches (less than 1%) changed the smell types [17].

External Validity. In this work, we have investigated the
code refactoring practices only on Java software projects.
Because of that, our study results may be biased by the
underlying code structure of Java-based projects. Although
this threat remained not addressed, we highlight that Java
is one of the most popular programming languages in both
industry and academia (Section III-B). Additionally, although
we have assessed both open and closed source projects, the
number of closed source projects is quite low (only 3 projects)
when compared to the number of open projects (the other 54
projects) and we did not conduct additional analyses applying
the blocking principal to this aspect yet. Hence, collecting
data from more (in particular closed source) projects and
conducting such additional analyses is part of future work.
Finally, the element-based heuristic [17] chosen to compute
batches for analysis is quite limited. By considering code
transformations performed by the same developers on the same
code element (Step 3 of Section III-B), various refactoring
practices may have been overlooked. This is the case of
developers working collaboratively aimed to compose and
apply batches [20] [34]. Although this threat was not address,
we expect that the computed heuristics reflect at least partially

the current refactoring practices in the industry.

VII. FINAL REMARKS

Do our results discourage the application of complex
batches? We found that batches at the method scope are more
beneficial than those at the class scope, once they often remove
smells. However, removing certain smell types, e.g., Feature
Envy, requires applying several interrelated code transforma-
tions affecting much more than just one method [1] [4] [17].
Thus, developer may have to apply batches that are far more
complex than those at the method level. Similar reasoning
about the batch complexity may also apply to the batch
cardinality, variety, and so forth. Although future work is still
required to deeply understand the role of batch characteristics
in removing code smells, our results (specially in Section V)
suggest that slightly more complex batches could be able to
fully remove code smell types such as Feature Envy.

Current refactoring tools enhanced to better support
code smell removal. Our large-scale study derived some
insights on how to improve current refactoring tools, e.g.,
Eclipse IDE, JDeodorant [23] and JMove [42]. Most tools
guide the application of isolated transformations only. Thus,
they end up providing little support to the batch application,
especially with respect to (1) reasoning about how two or more
transformations interrelate towards improving code structures
and (2) supports the combination of multiple transforma-
tions aimed at the same refactoring motivation (e.g., fully
removing a code smell instance). Batches are quite common
in practice [3] [5] [17]; however, batches have been sub-
explored by developers according to our study findings. Thus,
automated batch guidance is desired. Section V documents
some batches that could be recommended to support the full
removal of Feature Envy and Long Method, for instance.
Further studies are required to understand the current batch
refactoring practices. Thus, automated tools can cope with
different developers’ motivations behind batches, such as the
addition of new program features [34].

Enhancing software architectures through batches. Some
studies [22] [43] proposed approaches for enhancing soft-
ware architectures through code refactoring. One particular
work [22] introduced an interactive mechanism for composing
batches so that a target, idealized architecture can be reached
from an existing architecture. One could wonder that achieving
such a target architecture may require the application of several
interrelated code transformations (or batches). However, our
study shows that most batches end up introducing or not
fully removing code smells. This result becomes even more
critical when considering that 91% of batches affect the
class scope (Table V). This means that these batches may
be often affecting the interfaces of those classes. Because
various classes play a key role in a software architecture,
and the unguided batch application may lead to poor code
structures, we recommend researchers to investigate the batch
effect on software architecture. Thus, the current enhancement
of software architectures via refactoring could be boosted.
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